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We propose a novel multi-view camera pipeline for the reconstruction and
registration of dynamic clothing. Our proposed method relies on a specifi-
cally designed pattern that allows for precise video tracking in each camera
view. We triangulate the tracked points and register the cloth surface in a
fine-grained geometric resolution and low localization error. Compared to
state-of-the-art methods, our registration exhibits stable correspondence,
tracking the same points on the deforming cloth surface along the temporal
sequence. As an application, we demonstrate how the use of our registration
pipeline greatly improves state-of-the-art pose-based drivable cloth mod-
els. Furthermore, we propose a novel model, Garment Avatar, for driving
cloth from a dense tracking signal which is obtained from two opposing
camera views. The method produces realistic reconstructions which are
faithful to the actual geometry of the deforming cloth. In this setting, the
user wears a garment with our custom pattern which enables our driv-
ing model to reconstruct the geometry. Our code and data are available
at https://github.com/HalimiOshri/Pattern-Based-Cloth-Registration-and-
Sparse-View-Animation. The released data includes our pattern and regis-
tered mesh sequences containing four different subjects and 15k frames in
total.
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1 INTRODUCTION
We introduce a novel approach for capturing full garments in mo-
tion with high accuracy. Our cloth registration pipeline operates in
a multi-view camera setting and produces a dynamic sequence of
registered cloth meshes with a registration resolution of 2.67 mil-
limeters and triangulation localization error of 1 millimeter, greatly
improving upon previous work. Most notably, compared to state-of-
the-art cloth registration methods [Pons-Moll et al. 2017; Xiang et al.
2021], our approach produces temporally stable texture coordinates
allowing to track a specific surface point with negligible drift in the
point’s identity between different frames. This accurate registration
is achieved using a novel pattern printed on the cloth, designed to
optimize the ratio of pixel area to the number of uniquely registered
cloth surface points. Dense pattern primitives are localized using
a specialized image-based detector and each pattern keypoint is
identified using a graph processing algorithm that robustly han-
dles the combination of non-rigid and projective transformations,
self-occlusions, and detection noise. Note that our method does not
assume any human body model and treats the cloth as a generic
non-rigid surface. On the other hand, ClothCap [Pons-Moll et al.
2017] is built on SMPL [Loper et al. 2015a], and [Xiang et al. 2021]
uses proprietary LBS-based body model, which generally leads to de-
creased tracking performance when the cloth deviates significantly
from the body.
Our motivation for developing an accurate cloth registration

method is that many cloth-related computer vision tasks that tar-
get realistic cloth appearance could benefit from precisely regis-
tered mesh sequences. One major challenge in representing cloth-
ing comes from the lack of high-quality cloth registration of the
stretching and shearing of the fabric on moving bodies, which is
notoriously difficult due to the numerous self-occlusions and the
lack of visual features for alignment. Previous work have made
efforts in capturing simple cloth swatches under external forces
in a controlled environment [Bhat et al. 2003; Clyde et al. 2017;
Miguel et al. 2012; Rasheed et al. 2020; Wang et al. 2011]. However,
these captures only consider isolated suspended fabrics without
capturing the combined effects of friction, air drag, external forces
or the interaction of garments being worn with the underlying body.
While synthetic thin shell simulations have made drastic progress in
recent decades [Stuyck 2018], a simulation-to-real gap remains. Our
high-quality capturing of the fabric’s dynamics could help bridge
this gap. Applications that could benefit from the proposed registra-
tion method include enhancing cloth physical simulations [Jin et al.
2020; Runia et al. 2020], facilitating neural models for cloth dynam-
ics [Holden et al. 2019; Lahner et al. 2018; Liang et al. 2019; Patel

(a) Method Overview. The data preparation process (top) reconstructs the
registered cloth surface in a multi-view setting. We use the high-quality cloth
registration data to train our drivable Garment Avatar model that animates the
cloth, utilizing a limited number of cameras.
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(b) Illustration of the three modules in the above diagram. For a given camera
𝑐 , and time step 𝑡 : the Pattern Registration module registers the visible
pattern cells in a single image 𝐼𝑐,𝑡 ; Each registration has two attributes 1) pixel
coordinates in the image space 2) grid coordinates in the pattern board domain
B. The Multi-View Surface Alignment stage aligns a template mesh M
according to the multi-view image registrations. The Sparse-View Animation
module animate the cloth from the image registrations of two cameras by
mapping the registrations to the UV domain, U, and inpainting the partial
signals. A crucial step in the animation fits a coarse surface to the driving
camera registrations, represented by a surface kinematic model K .

Fig. 2. Overview of the three main components in our drivable Garment
Avatar model
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et al. 2020; Santesteban et al. 2019, 2022, 2021] and non-rigid shape
correspondence [Attaiki et al. 2021; Bracha et al. 2020; Eisenberger
et al. 2020a,b; Halimi et al. 2019a; Litany et al. 2017], designing pre-
cise interfaces for cloth manipulation by robots [Bersch et al. 2011;
Miller et al. 2012; Strazzeri and Torras 2021], generating synthetic
data for optical-flow learning of non-rigid surfaces similar to [Butler
et al. 2012; Dosovitskiy et al. 2015], VR telepresence enabling high-
precision geometric modeling of garments [Bagautdinov et al. 2021;
Habermann et al. 2021a], ground-truth data to generative clothing
models [Bertiche et al. 2020; Ma et al. 2021a, 2020a; Saito et al. 2021],
shape completion [Bednarik et al. 2020; Chi and Song 2021; Halimi
et al. 2020], and interpolation [Cosmo et al. 2020; Eisenberger et al.
2019; Trappolini et al. 2021], to name just a few.

We show how the proposed cloth registration method is beneficial
to telepresence applications. Due to the highly complicated non-
linear motion of garments, it still remains elusive to teleport the
clothing faithfully on the moving body of an avatar. State-of-the-
art cloth driving methods, i.e., predicting the cloth’s state from a
signal containing partial information, model the garment with a
separate mesh layer [Xiang et al. 2021] and apply a registration
stage when training those garment models. However, ground truth
data of registered clothes, describing the complex dynamics, such
as the bending, stretching and shearing at a fine-grained level is
still unavailable at high resolution and accuracy, limiting the quality
of drivable garment models. In this context, we tried to answer
two questions. The first is: do existing cloth-driving methods using
the body pose as the driving signal improve using our registration
method in the training stage and, as a result, produce more plausible
geometry at inference time when driven from the body pose. Our
observations confirms this statement. We show in Section 7.2.1 that
the proposed novel cloth registration method significantly boosts
the performance of state-of-the-art pose-driven animatable garment
models.
The second explored question is: can the dense-tracking signal,

obtained in our registration pipeline per camera view, serve as a
novel driving signal. Specifically, we use the surface points’ pixel co-
ordinates, which we track per camera using our pattern, as described
in Section 4. This newly explored driving signal is interesting as an
alternative to the pose signal, which generally serves for driving
and comes with limitations. In practice, pose-driven models tend to
either significantly smooth out details or introduce high-frequency
deformations which are not faithful to the actual underlying cloth-
ing state. On the other end, a dense tracking signal from a sparse
set of views has much more spatial correlations with the garment
embedding, and therefore, we expect better fidelity.

To this end, we use the tracking signal obtained from two oppos-
ing camera views, selected to provide wide optical coverage. This is
a challenging setting that stereo-vision-based approaches are unable
to reconstruct. Every point on the cloth surface is visible in one
view at most and therefore cannot be directly triangulated. In our
approach, we design a UNet-type network that receives multiple
camera channels; each contains a partial pixel coordinate signal
in UV space, as described in Section 6.1. The network predicts the
inpainted 3D coordinates in the same UV domain. To allow gen-
eralization, we normalize both inputs and outputs of the model
with respect to an estimation of the coarse surface, described in

Section 6.2. We produce this coarse geometry using a surface-based
kinematic model that fits the partial observations. Importantly, our
kinematic model is agnostic to the wearer’s body state and ulti-
mately can be applied to an arbitrary type of garment. We achieve
this by modeling the cloth deformation using a hierarchical defor-
mation graph with independent degrees of freedom, constructed
automatically for a given triangulated surface. Our experiments,
in Section 7.2.2, demonstrate that our novel driving model deliv-
ers significantly more realistic reconstructions than state-of-the-art
pose-driving baselines.
Our motivation to introduce a proof of concept for this novel

driving mechanism is twofold. Firstly, this driving paradigm can
serve applications that target the realistic and faithful geometry
driven by the patterned cloth. For example, in the early stages of
cloth teleportation, patterned clothes could be distributed that allow
the user to pick and swap garment appearance on-the-fly, support-
ing even dynamic textures, like Narita et al. [2016]. The second
motivation is to provide an essential baseline for the performance
of cloth driving from a dense tracking signal, for a tracking signal
of ground-truth quality. In summary, our main contributions are:

• We develop a carefully designed cloth registration pipeline
that captures cloth at high accuracy with dense correspon-
dences.

• We develop a method for accurate and realistic cloth anima-
tion from pixel registration obtained from two cameras video
streams.

• We demonstrate that the training data obtained from our
registration method can significantly improve the output
quality when applied to pose-driven animation.

• We release a dataset of captured cloth motion from 4 different
subjects and 15k frames in total.

2 RELATED WORK

2.1 Multi-View Clothing Capture
Multi-view clothing capture has been explored as a source of geom-
etry for garment modeling. A typical multi-view clothing capture
pipeline consists of three steps, geometry reconstruction, clothing
region segmentation, and registration.

In the geometry reconstruction step, the raw surface of the clothed
human body is typically reconstructed from multi-view RGB input
images using Multi-View Stereo (MVS) or from 3D scanners using
Photometric Stereo. In the segmentation step, the garment region
is identified and segmented out. Early work [Bradley et al. 2008;
Pons-Moll et al. 2017] uses the difference of color between the
garment and the skin as the primary source of information for
segmentation, while more recent work [Bhatnagar et al. 2019; Xiang
et al. 2021] aggregates clothing parsing results frommulti-view RGB
images to perform the segmentationmore robustly. Bang et al. [2021]
introduce boundary-based segmentation scheme to further improve
segmentation accuracy.
Compared with the reconstruction and segmentation steps, the

registration of garment is a more open question and also the focus
of this work. The goal of registration is to represent the complete
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geometry of the clothing in different frames with a fixed mesh topol-
ogy and encode the correspondences by vertices. Previous litera-
ture of clothing registration falls into the following two categories:
correspondence-free methods and correspondence-based meth-
ods.
Correspondence-free methods start from a pre-defined tem-

plate topology and fit the template to each instance of the captured
garment according to the geometry. Early work [Bradley et al. 2008]
attempts to find consistent cross-parameterization among different
frames of the garment from a common base mesh by minimizing
the stretching distortion, and then explicitly represent the corre-
spondences by re-triangulation.
The majority of work in this category [Bhatnagar et al. 2019;

Ma et al. 2020b; Pons-Moll et al. 2017; Tiwari et al. 2020; Xiang
et al. 2021, 2020; Zhang et al. 2017] uses non-rigid Iterative Closest
Point (ICP) to fit a template mesh to the target clothing geometry.
The problem is formulated as a minimization of surface distance
between the free-form template and the target, with an additional
regularization term that preserves the quality of mesh triangulation.
To provide better initialization for the optimization, some work [Ma
et al. 2020b; Xiang et al. 2020; Zhang et al. 2017] first uses a kinematic
model such as SMPL [Loper et al. 2015b] to help estimate a coarse
human surface, which is further aligned with the reconstructed
clothing shape by allowing free-form deformation in the SMPL body
topology. Some recent work [Bhatnagar et al. 2020a,b] replaces the
explicit optimization with the prediction from a neural network
to avoid the difficulty of robustly initializing and regularizing the
optimization. The above SMPL+D formulation assumes a one-to-one
fixed correspondence between the body template and the clothing,
which is often violated due to tangential relative movement between
the fabric and the body, as well as the invisible clothing regions in
the wrinkle folds.
Therefore, some work [Bhatnagar et al. 2019; Pons-Moll et al.

2017; Tiwari et al. 2020; Xiang et al. 2021] further separate the rep-
resentation of the clothing from the underlying body, and use the
segmented boundary to guide the deformation. While these meth-
ods can produce visually appealing registered clothing sequences,
they suffer from the fundamental limitation of inferring correspon-
dences purely from geometry. There are no explicit clues for the
correspondences between frames except the regularization of mesh
triangulation or vertex distances. Therefore, the registration out-
put generally suffer from correspondence errors since there is no
mechanism to ensure that each vertex coherently tracks the same
physical point.

By comparison, Correspondence-based methods, to which our
approach belongs, do not suffer from the ambiguity in correspon-
dences as the correspondence-freemethods and often take advan-
tage of visual cues by using a designed pattern. The key idea is to
use identifiable patterns to explicitly encode correspondences on
the captured surface. Similar concepts have been widely explored in
the use of checker boards for camera calibration [Dao and Sugimoto
2010], and the application of fiducial markers, like ARTag [Fiala
2005], AprilTag [Olson 2011; Wang and Olson 2016] and ArUco
[Garrido-Jurado et al. 2014].
Specific to the area of garment capture, early work [Pritchard

and Heidrich 2003; Scholz et al. 2005; White et al. 2007] utilizes

classical computer vision techniques such as corner detection and
multi-view geometry to reconstruct and identify printed markers
on the garments. With the help of the pattern, the correspondences
on the garments can be robustly tracked in visible sections and
reliably estimated in regions occluded by folds and wrinkles. Our
work extends the color-coded pattern approach [Scholz et al. 2005]
to achieve denser detection.

In recent years, the constantly evolving frontier of learning-based
computer vision algorithms enables revisiting this research prob-
lem with a plethora of enhanced image processing capabilities. The
focus has shifted to the pattern design question and its resulting
information theory properties. Specifically, to allow high-resolution
capture, one should design the pattern to detect as many as possible
points per surface area. For example, Yaldiz and colleagues [2021]
generate learnable fiducial markers optimized for robust detection
under surface deformations, using a differentiable renderer for end-
to-end training. To make the marker detection resilient to surface
deformations, they use geometric augmentations such as radial
and perspective distortions and TPS (thin-plate-spline) deformation.
Those kinds of deformation are applied in the 2D image space and
cannot simulate self-occlusions resulting from the 3D folding of the
surface. Currently, fiducial-markers-based tracking methods cope
with relatively mild deformations and still do not address complex
deformations containing folds and wrinkles. Chong et al. [2021]
uses a colored patterned cloth with an actuated mannequin to col-
lect loose ground truth correspondences and supervise an image
translation network, but the method is not capable of faithfully
reproducing complete geometry of the garment.

In the clothing registration problem, the pursuit of high resolution
makes characters and symbols unsuitable for the printed pattern due
to their low density of correspondences. Thus Chen and colleagues
[2021] propose to identify a corner from its immediate surrounding
squares printed on a tight suit worn by the subjects. In our setting,
each center might cover no more than a few pixels so we must rely
on simpler attributes that can be robustly detected from the low
resolution observation of the board squares in the images.

2.2 Clothing Animation
Pose-driven clothing animation aims to produce realistic cloth-
ing animation from the input pose represented by 3D joint angles,
or the underlying body skinned according to the joint angles by a
kinematic model. Physics-based simulation of garments [Baraff and
Witkin 1998; Narain et al. 2012; Stuyck 2018] has been studied for a
long time and is an established approach for clothing animation in
the movie and gaming industry. In recent years, there has been a lot
of interest in using data-driven approaches, especially deep neural
networks, to directly learn clothing animation from data paired with
the input body poses [Bertiche et al. 2021; Habermann et al. 2021a;
Lahner et al. 2018; Ma et al. 2021b, 2020b, 2021c; Saito et al. 2021;
Santesteban et al. 2021; Xiang et al. 2021]. While these approaches
can produce visually appealing animation, the input body motion
alone does not contain enough information to guarantee the con-
sistency between the animation output and the real clothing status
of the teleported subject, as these pose-driven approaches do not
utilize any visual cues of the current appearance.
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Our binocular clothing animation setting is also related to the
recent work in performance capture from monocular or sparse
multi-view inputs, which can also serve the purpose of clothing
animation for VR telepresence. This line of work can be further
divided into two categories: shape regression approaches and tem-
plate deformation approaches. The shape regression approaches train
deep neural networks to regress per-frame clothed human shape
from monocular [Alldieck et al. 2019; Li et al. 2020; Natsume et al.
2019; Saito et al. 2019, 2020] or sparse multi-view inputs [Bhatnagar
et al. 2019; Huang et al. 2018]. These approaches enjoy the flexi-
bility of being able to address different subjects and clothing with
a single network, but are usually limited in output quality due to
the fundamental ambiguity of inferring complicated clothing ge-
ometry without prior knowledge about the specific subject. More
related to our work are the template deformation approaches. These
approaches utilize a pre-scanned personalized template of a spe-
cific subject to track the clothing deformation from a single RGB
video [Habermann et al. 2019, 2021b, 2020; Li et al. 2021; Xu et al.
2018]. The templates may also be built on-the-fly by fusing different
frames of geometry from RGB-D input [Su et al. 2020; Yu et al. 2021,
2018]. The personalized templates can provide strong prior knowl-
edge to alleviate the 3D garment shape ambiguity. In our work,
patterned cloth serves as a special template whose correspondences
can be easily inferred from the input driving signal, thus amenable
to high-quality clothing teleportation.

3 OUTLINE
The core contribution of this work is a high-quality reconstruction
and registration of the cloth surface in 3D. To register the surface
precisely in 3D, we devised a unique pattern that allows precise
tracking and registration of surface points in the image domain,
allowing their later triangulation from multiple views to create the
data term for the surface alignment. We also explored our registered
pattern in the image domain as a dense driving signal to generate
faithful and realistic cloth animations. Figure 2a displays the global
relations between the different modules presented in this work,
depicting the registration data generation and cloth driving stages.
Figure 2b includes an overview for each of the three modules that
appear in the general diagram.
The first stage is Pattern Registration, described in Section 4,

see Figure 3, is the shared component between both model building
and model animation. Given a single frame capturing a performer
wearing a grid-like patterned garment, we register every visible
pattern cell, with predefined grid coordinates in the pattern domain
B, to pixel coordinates in the image space.
In the data preparation branch, we use the registered frames

obtained from a multi-view camera system as an input to ourMulti-
View Surface Alignment stage, which we describe in Section 5
and visualize in Figure 8. First, we triangulate all the registered
frames to get registered point clouds where every point maps to
specific coordinates in the pattern domain B. Then, we align a mesh
template𝑀 to the resulting point clouds.

In the Garment Avatar model branch, we use a sparse set of regis-
tered frames as the driving signal to our Sparse-View Animation
module, described in Section 6, see Figure 9. The animation module

consists of our Pixel Driving network and a coarse geometry esti-
mation procedure. Specifically, the Pixel Driving receives the pixel
location signal detected per camera, as defined in the UV space,
and outputs the world space 3D coordinates signal in the same UV
domain. Crucially, to ensure generalization to newly seen poses at
inference time, we define the inputs and outputs to our network
relative to a coarse geometry fitted to our sparse-view pixel regis-
trations.

4 PATTERNED REGISTRATION
To enable accurate cloth captures, we manufacture a piece of cloth
with a fine-grained color-coded pattern. We follow a similar ap-
proach to pattern design as described by Scholz et al. [2005]. We
introduce novel methods for robust registration of color-coded pat-
terns that enables dense alignment of cloth.

4.1 Pattern Design
The pattern consist of a colored board where cells takes one of
seven colors. Cells are separated by grid lines to improve contrast
at edges and corners of the board. We assign colors to cells in such
a way that the color configuration on each 3 × 3 cell-set is unique,
including w.r.t. board rotations. We further impose adjacent cells to
have different colors to improve color disambiguation.

We print a color board with 300×900 cells on polyester fabric with
a resolution of 2.7mm per cell. A t-shirt is manufactured by sewing
the cut garment panels extracted from the fabric, see Figure 4. Our
manufactured t-shirt model contains 98618 cells.
Our choice of primitive colors and cell configuration balances

locality, distinctiveness and uniqueness. A 3 × 3 cell-set provides
us with a good match between locality and uniqueness: for a cell
of 2.7mm length, we can uniquely localize a pattern element from
any visible 8mm×8mm patch containing it. Since we have multiple
(up to nine) candidate patches that allow such a pattern element to
be localized, our method could take advantage of this duplicated
information. It uses this duplicated information in two ways: 1)
to localize border pattern elements visible in the image that do
not have a visible 3x3 patch centered around them, thus achieving
enhanced coverage of localized regions in each image frame 2) For
handling error correction and resolving localization ambiguity in
the presence of detection noise, as described in Section 4.4. Getting
unique detections for cell-set smaller than 3 × 3 can be achieved
by increasing the number of color primitives, however this reduce
the distinctiveness of the color primitives, increasing quantization
errors, making the pattern registration less robust.

4.2 Image Detection
We propose an image pattern detector, PatterNet, consisting of two
separate networks. SquareLatticeNet detects the corners and the
centers. ColorBitNet classifies the pixel color. Both networks have
been implemented using a UNet. The location of the square center
can reveal valuable information about the topology; however, under
a general affine transformation, it leads to a non-unique graph, as
shown in Figure 5, due to the lattice symmetry. To restrict ambiguity,
we additionally detect the square corners. We empirically observed
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Fig. 3. Patterned Cloth Registration. 1) Original frame 2) Zooming in on the pattern 3) keypoint detection by SquareLatticeNet - corners (red) and centers
(green) 4) heterogeneous graph 5) homogeneous graph 6) color detection by ColorBitNet - pixel classification 7) Registered pixels: every pixel detection is
assigned with coordinates in the pattern domain B.

Fig. 4. Pattern design and fabrication. The colored board is printed on
fabric (top) to manufacture a t-shirt (bottom left). Each 3 × 3 cell of the
pattern (bottom right) has unique color configuration.

that in our setting, the combination of centers and corners is suffi-
cient for our algorithm to determine the correct local neighborhood
of each visible square in the image in most cases. Graph ambiguities
are usually caused by potential high-skew transformations that cre-
ate aliasing, and by adding the corners, we make the aliasing occur
less frequently. We refer the reader to the supplementary material
for a detailed review of the image pattern detector.

4.3 Graph Processing
This stage reconstructs the graph topology of the square grid from
the center and corner detections obtained by the previous step. The
detection contains a certain amount of noise, such as outliers, and

Fig. 5. Lattice neighborhood inference with squares and corners detection.
The center (blue) topology is ambiguous without the corners’ cue (green).
Introducing the corners eliminates the incorrect topology out of the two.

parts of the graph are not visible in the image due to self-occlusion.
Additionally, near the invisible graph parts, it’s common to see dis-
continuities in the periodic structure of the detected lattice points,
where nodes disconnected in the graph become proximate in the im-
age. Our approach is to recover the heterogeneous graph defined on
the square grid by connecting each center to its surrounding corners
and vice versa. Then, we construct the homogeneous grid-graph
connecting the centers from the former. Please see the supplemen-
tary material for a detailed description of both graph generation
algorithms. Our approach has the following advantages:

(1) We have precise geometric requirements between opposite
type neighbor, namely corners and centers, derived from the
locally affine approximation that we can utilize to filter outlier
detection and outlier graph edges.

(2) Neighbors in the heterogeneous graph fall closer in the image
than neighbors in the homogeneous graph. As a result, we
can apply geometric regularizations between neighbors by
neglecting the non-rigid deformation and assuming a locally
affine transformation.
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Fig. 6. Neighbor voting algorithm illustration: a single color-bit ambi-
guity is resolved by the majority vote.

(3) Once the centers are registered, the heterogeneous graph
enables the registration of the corners and the later triangu-
lation, thus doubling the resolution of the registered cloth
surface. We didn’t exploit the last advantage since corner
registration introduces additional steps into our registration
pipeline and template generation, which we defer to future
work.

4.4 Hash Code Inference
This stage aims to calculate the hash code for every node in the
homogeneous graph and to register the node to a board location
using this code. After the previous stage, we have a 3× 3 grid-graph
attribute around the center of each node in the homogeneous graph.
Each node has a color attribute that is either a single color for confi-
dent detections or several candidate colors for ambiguous results.
We are robust against possible color ambiguities and additionally
offer a way to reject codes where the color is not ambiguous but
the detection is wrong. We propose the neighbor-voting-based hash
extraction algorithm that enables information recovery given incor-
rect detections. Most code errors produce an empty result in the
hash query. However, correct codes always have a unique match
on the board, and neighborhood relations are preserved from the
homogeneous graph to the patches in the board domain, whereas
this is not the case for incorrect codes. With this insight, we suggest
the neighbor voting algorithm to help recover ambiguous codes and
to reject faulty but unambiguous codes. The algorithm is described
in the supplementary and visualized in Figure 6.

5 MULTI-VIEW SURFACE ALIGNMENT
To build realistic priors of garment deformation, we capture precise
cloth motion in a multi-view studio and align a template mesh
representation of the the garment to the pattern registrations.

5.1 Setup
The capture studio consists of 211 calibrated cameras with varying
focal lengths that provide distinct levels of detail of our pattern.

For our capture, a subject wearing the patterned cloth is located
at the center of stage and asked to perform several types of actions.
We capture natural cloth deformation produced by deep breathing,
realistic wrinkle formation derived by torso motion, and challenging
cloth deformation produced by hand-cloth interactions.

5.2 Pattern Triangulation
The first step in the panoptic registration is triangulating the multi-
view pixel registrations from all the camera views to get the regis-
tered point cloud. Each 3D point in the resulting point cloud maps
to the pattern square grid coordinates. This step functions as an
independent filtering stage, filtering any remaining outlier pixel
registrations from the pattern registration pipeline. We perform
triangulation using the RANSAC algorithm, considering only inter-
sections within 1 millimeter radius of at least 3 different rays, as a
valid triangulation. The details of the triangulation algorithm are
covered in the supplementary. We illustrate the surface coverage
provided by the triangulation of the registered pattern in Figure 7.

50

75

100
Pattern Triangulation Surface Coverage

(a)

(a)

(b) (c)

(b)

(c)

Average visibility Sample frames
Fig. 7. Pattern Triangulation. Our pattern registration and multi-view
system, enables a dense registered triangulation. We achieved between 54%
and 90% of surface coverage per frame, with average of 75% (see top plot). We
show representative frames attaining mean(a),max(b), and min(c) coverage.
We also provide a heatmap illustrating average per vertex visibility.

5.3 Surface Template Model
A template mesh M is constructed to model the state of the full
garment surface. Our template mesh enables intuitive mapping
between the pattern board, the garment surface, and the UV layout.

The 2D garment pattern on the printed fabric (top row of Figure 4)
provides an initial estimate of the pattern cells that are visible on
the shirt. However, some of these cells get occluded after sewing,
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requiring further refinement based on multiview pattern registra-
tion. We construct an initial planar mesh by triangulating these
active cells in such a way that cell centers are covered by mesh
vertices. This produces a mesh with 5 connected components that
have a 1-1 correspondence from vertices to visible pattern cells. To
produce a fully connected mesh, we lift our planar components to
fit pattern triangulations, and manually extend the mesh tessella-
tion to close seam gaps in regions of good visibility. Our zippered
template mesh contains 101286 vertices: 98618 corresponding to
visible cell centers and 2668 introduced for seam closure. We define
the initial embedding of M by fitting the tessellation to a T-pose
frame and running ARAP[Sorkine and Alexa 2007] refinement to
closely preserve isometry to the planar mesh.
We produce a UV parameterization for the zippered model by

extending the initial planar mesh to incorporate the triangles intro-
duced on the seam closure.We use the work by Sawhney et al. [2017]
to compute a flat extension for the new triangles. The final UV layout
is obtained by arranging the charts to compactly fit in a square.

5.4 Surface Alignment
5.4.1 Deformation Parameterization. To align our surface template
M to each frame of the multi-view capture, we use a dense paramet-
ric model of surface deformation. The deformation model associates
each vertex 𝑣𝑘 ∈ M with a fixed coordinate frame 𝐹𝑘 centered at 𝑣𝑘 ,
and a local rigid transformation 𝜙𝑘 . For a given local transformation
𝜙𝑘 , we obtain a global transformation 𝜙𝑘 := 𝐹𝑘 ◦ 𝜙𝑘 ◦ 𝐹−1

𝑘
, such

that 𝜙𝑘 (𝑣𝑘 ) corresponds to the deformed vertex position in world
coordinates. Given a vector of local transformations 𝝓 := {𝜙𝑘 }, we
denote the fully deformed mesh as S(𝝓). In particular, S(𝑰 ) = M,
where 𝑰 is a vector of identity transformations.

5.4.2 Incremental Optimization. We run registration optimization
in several stages: first, we optimize each frame independently, from
the rest state M to a deformation state S. Then, we run refinement
passes to update S using the previous pass state (i.e., a Jacobi style
update). This enables full parallelism on the capture processing.
We empirically observed that this incremental approach provides
a satisfactory trade-off between performance and fitting quality
compared with direct optimization from the rest state.

Initialization. : The first step of the optimization is to optimize
𝝓 such that S(𝝓) matches well to vertices with valid triangulated
positions. We first construct a mesh P from triangulated vertices in
the cloth pattern. We construct P to have identical topology as M.
The detected vertices in P are assigned to triangulated positions,
while the positions of the remaining non-detected vertices are set
via Laplacian filling [Meyer et al. 2003].

For each vertex 𝑣𝑘 ∈ M we initialize 𝜙𝑘 according to the as-rigid-
as-possible transformation [Sorkine and Alexa 2007] mapping the
neighborhood of 𝑣𝑘 in M to the respective neighborhood in P.

Then, we refine 𝝓 by jointly minimizing the detection and distor-
tion terms, namely 𝐸Det and 𝐸Dist. 𝐸Det is the data term with both
triangulated vertex positions and Laplacian-filled vertices, and is
formulated as

𝐸Det (𝝓) := ∥P − S(𝝓)∥2 . (1)

𝐸Dist is the regularization term measuring mesh distortion. In-
spired by Sumner et al. [2007], we measure local distortion by com-
paring the action of transformations defined at adjacent vertices of
the mesh. Given edge 𝑒𝑘𝑙 ∈ M, we denote by {𝑠}𝑘𝑙 a set of distinc-
tive points associated to edge 𝑒𝑘𝑙 (in practice we use the midpoint,
and edge corners). We compute the distortion error as,

𝐸Dist (𝝓) :=
∑︁

𝑒𝑘𝑙 ∈M
∥𝜙𝑘 ({𝑠}𝑘𝑙 ) − 𝜙𝑙 ({𝑠}𝑘𝑙 )∥2 . (2)

This produces an initial deformed mesh S0 that closely approxi-
mates P and further corrects triangulation outliers due to 𝐸Dist.
Due to the density of our pattern registration, we noticed that a
Laplacian filling was sufficient to provide a reasonable initialization
on unobserved regions as illustrated in Figure 8. A bi-Laplacian
filling would provide a smoother filling but we would obtain similar
mesh deformation once the distortion energy in Equation 2 is active.

After this initialization step, we freeze all the valid detected ver-
tices, and only optimize for the non-detected ones in all the subse-
quent stages. In Figure 8, the vertices in the red regions are frozen by
the optimization and we only optimize for the deformation param-
eters of the gray regions. This allows to accelerate the remaining
optimization steps due to the sparsity of non-detected vertices.

Optimizing Non-Detected Vertices. : As non-detected vertices are
likely occluded, we introduce the following prior: non-detected
vertices are more likely to belong to occluded-concave sections (e.g.,
occluded sections in wrinkles or armpits) than to visible-concave
ones. We consider this prior in optimization by formulating the
pushing constraint on the non-detected vertices, as

𝐸Push (𝝓) := ∥(S0 − 𝜖𝑁 (S0) − S(𝝓)∥2 . (3)

This pushing constraint regularizes each non-detected vertex to
move in the opposite direction of its normal 𝑁 computed from 𝑆0
with a magnitude 𝜖 . We also add an additional data term 𝐸Recon with
3D scan mesh R computed by Yu et al.’s method [2021], as some
of non-detected vertices could be registered to multi-view stereo.
𝐸Recon is formulated as

𝐸Recon (𝝓) := ∥ICP(S;R) − S(𝝓)∥2, (4)

where ICP(S;R) is the (reduced) iterative closest point association
from S to R. More precisely, for each vertex in R we compute the
closest in S, and define a partial correspondence map from S to R
by applying reduction.

Solving Self-Intersections. : The above optimization steps do not
guarantee intersection-free meshes. To alleviate mesh collisions,
we employ a physics-based correction module that locally corrects
intersecting regions by running a cloth simulation [Stuyck 2018]
while leaving non-intersecting regions unmodified. We first detect
intersecting regions using a surface area heuristic [Baraff et al. 2003],
and then run cloth simulation where we apply corrective forces to
these regions to resolve self-intersection. We observed that first
applying the pushing prior (Equation 3) and the reconstruction
term (Equation 4), provided a better initialization for the quasi-
static simulation than applying it directly from the Laplacian filling
initialization. Figure 8 illustrates the mesh state at different stages
of the optimization.
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(a) Reconstruction (b) Pattern triangulation (c) Laplacian filling (d) Pushing prior (e) ICP (f) Collision resolution

Fig. 8. Multi-view RegistrationWe implemented an incremental per-frame registration approach to fit multi-view reconstructions and pattern triangulations.
Our deformation state is initialized from the triangulated vertices (detected) and Laplacian filling (non detected). We use a pulling prior to deform non
detected regions towards occluded-concave sections, and ICP to cover unregistered reconstruction surface. Finally we run physics based correction module to
resolve collisions. We highlight regions of improvement after each step of our incremental method.

Temporal refinement. : The final step of cloth surface alignment
is to make meshes temporally smooth, thus optimizes non-detected
vertices via 𝐸Recon, 𝐸Dist and the smoothness constraint 𝐸Smooth
formulated as

𝐸Smooth (𝝓𝑡 ) := ∥S(𝝓𝑡 ) −
1
4
(S′

𝑡−1 + 2S′
𝑡 + S′

𝑡+1)∥
2, (5)

where S′ is a mesh state after the step of solving self-intersection
and 𝑡 is a frame index. We observed that this smoothness constraint
could avoid oscillatory states that we saw with a typical smoothness
constraint formulated as ∥S(𝝓𝑡 ) − 1

2 (S
′
𝑡−1 +S

′
𝑡+1)∥

2. Note that this
final optimization can run in parallel because 𝐸Smooth depends on
S′ instead of S.

We update deformation parameters at each optimization stage by
computing analytical Jacobians and solving using the Gauss-Newton
method. The full optimization, from initialization to temporal re-
finement, takes 10 minutes per frame on a single CPU core. We
process frames concurrently in a multi-CPU cluster. We show the
final result of surface alignment on a few frames of the capture in
Figures 12 and 13. We refer to the supplementary video for further
qualitative evaluation of the multi-view aligned meshes.

6 SPARSE VIEW ANIMATION
This section introduces Garment Avatar, our data-driven model ca-
pable of producing highly realistic cloth reconstructions from sparse
image views of the patterned garment. We provide the overview of
the model in Figure 9.

6.1 Pixel Registration and Driving
Our approach takes as input two roughly 180◦ opposing camera
views capturing the patterned garment. Each driving image is first

processed with our pattern registration module to obtain pixel reg-
istration in the UV domain.
We then approach reconstruction task as a particular case of

inpainting, since fully inpainted pixel coordinates are mutually in-
terchangeable with the reconstructed 3D coordinates in the UV
domain via triangulation and projection. Unlike classical inpainting,
where all the channels are either available or not, in our setup input
signals are available in non-overlapping regions of the UV domain.
In practice, the union of signals’ support across cameras leaves a
significant part of the cloth region uncovered, making it even more
challenging. To this end, we stack the pixel coordinates signals of
both camera channels into a tensor containing the joint camera
observations 𝑃𝑡 ∈ R𝑈×𝑉×2𝐶 , where 𝐶 = 2 is the number of cam-
eras. To ensure generalization to unseen poses, pixel coordinates are
normalized with respect to our coarse kinematic model, described
below. Whenever a pixel coordinate is not available, we assigned
zero value to the corresponding UV normalized coordinate. We then
pass 𝑃𝑡 as an input to the pixel driving network - UNet-based archi-
tecture, which has shown its effectiveness for inpainting and image
translation problems [Isola et al. 2017; Yan et al. 2018]. The pixel
driving network predicts 3D coordinates in UV-space 𝑅𝑡 ∈ R𝑈×𝑉×3.
Finally, we apply the network output as displacements to the kine-
matic model’s coarse geometry, after applying augmentation, as
described in Section 6.3.

6.2 Coarse Geometry Approximation
We obtain a coarse approximation for the animated cloth by fitting
a kinematic model, automatically constructed from template M,
to the pixel projection seen in each driving camera. This way, our
network maps the offset signal in pixel coordinates to the offset
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Fig. 9. Garment Avatar Model. Our model receives a two-camera video stream as an input and generates the animated cloth. The first stage is pattern
registration of the input frames, producing pixel registrations for each camera. Then, we use the pixel registrations as input to our Sparse-View Animation
module. First, the pixel registrations are mapped from the image space to the UV space, serving as an input branch to our Pixel Driving network. Additionally,
we predict the coarse geometry that aligns with the pixel registrations, generating a reference signal of the pixel coordinates in the UV space of the coarse
geometry as rendered in each camera. To get the input to the network, we subtract the reference signal from the primary signal. To get the final cloth
reconstruction, we add the 3D coordinates predicted by the Pixel Driving network as an offset on top of the coarse geometry’s 3D coordinates.

signal in world coordinates. With this normalization, the input and
the output signal distribute roughly like Gaussian random variables.

6.2.1 Kinematic Model. A common approach to construct kine-
matic models for garments is by restricting to certain components
of the full body models. For instance, kinematic models for shirts are
commonly generated by restricting to torso and upper arms. This
provides a good prior for cloth deformation based on body kine-
matics, but it is only valid for tight cloth deformations. Given the
motion complexity we aim to model, and the dense detection pro-
vided by our pattern, we created a kinematic model with additional
flexibility. Our kinematic modelK , shown at top left of Figure 10 is a
hierarchical deformation graph (i.e., a skeleton) with 156 nodes. We
use a procedural approach for its construction that can be applied to
other types of garments. Please refer to the supplemental material
for details on its construction.

The kinematic model is animated as in standard skeletons [Loper
et al. 2015b]: local rigid transformations 𝜽 = {𝜃𝑖 } defined at the
nodes of the skeleton, are propagated through the kinematic chain,
and vertex positions are computed by linear blend skinning. By
abuse of notation we denote the skinned mesh by K(𝜽 ).

6.2.2 Generative Coarse Deformation Model. To get realistic cloth
deformation, we learn a generative parameter model forK from the
training set. First, we compute deformation parameters 𝜽𝑡 for each
multi-view aligned surface S𝑡 in the training set by minimizing
vertex and distortion error:

𝜽𝑡 := argmin | |S𝑡 − K(𝜽 ) | |2 + 𝜆𝐸Dist (𝜽 ) . (6)

Here we use the same distortion as in Equation 2, defining adja-
cency of skeleton nodes by overlapping skin support.
The set of deformation parameters Θ = {𝜽𝑡 } characterize the

space of realistic cloth deformations given by our training set. We
normalize these deformation parameters by removing the root trans-
formation. A variational autoencoder-based generative network is
trained on this normalized parameters, similar to [Pavlakos et al.

2019]. Although we supervise the reconstruction error in the de-
formed mesh space rather than in the parameter space.
We denote the generative parameter model by G. It is designed

as an MLP with two hidden layers mapping a 32-dimensional latent
code to the 1085 parameter space (rigid transformation of all nodes
but the root) of the kinematic model.

𝑧

𝑟

𝜃

𝑣𝑘
𝑞𝑐,𝑘

Fig. 10. CoarseDeformation Fitting. A generative posemodel G is trained
from the multi-view aligned meshes to represent the space of coarse cloth
deformations on skeleton K . We use this deformation prior to robustly
estimate the coarse state of our cloth from sparse view points.

6.2.3 Coarse Deformation Fitting. Given a vertex 𝑣𝑘 ∈ M and
camera 𝑐 ∈ 𝐶 , we denote by𝑤𝑐,𝑘 to the binary value specifying the
vertex visibility, and 𝑞𝑐,𝑘 the pixel coordinate of its corresponding
detection (if any). We denote Π𝑐 the camera projective operator.
Please refer to Figure 10 for further illustration on the notation.

We compute the coarse cloth deformation by optimizing for root
transform 𝑟∗ and latent code 𝑧∗, to fit image detections,

𝑟∗, 𝑧∗ = argmin
∑︁
𝑐∈𝐶

∑︁
𝑘∈M

𝑤𝑐,𝑘 | |Π𝑐 (K(𝑟,G(𝑧)) (𝑣𝑘 )) − 𝑞𝑐,𝑘 | |2 . (7)

We useK(𝑟∗,G(𝑧∗)) for signal normalization in the Pixel Driving
Network.

ACM Trans. Graph., Vol. 41, No. 6, Article 196. Publication date: December 2022.



Pattern-Based Cloth Registration and Sparse-View Animation • 196:11

6.3 Training and Inference Details
We train our Pixel Driving network with L2 loss with respect to the
ground-truth registered meshes. We apply the L2 loss between the
3D vertex positions and include an L2 between the surface normal
vectors to promote the preservation of fine geometric detail. Our
training data consists of the first 3500 frames of the sequence, while
the remaining 500 frames are used as the test set. The train pose
distribution is diverse, including torso motion, jogging, and hand-
cloth interactions.

We found that in coarse surface data augmentation is critical for
good generalization: in practice we randomly deform the coarse ge-
ometry using a deformation space spanned by the Laplace-Beltrami
eigenfunctions. Please refer to supplementary material for more
implementation details and to the discussion section for future ap-
proaches to improving the animation quality.

7 RESULTS
In this section, we showcase our results. We start by evaluating our
aligned registered meshes, introducing the comparison methods
and the metrics. Then, we display our driving results from sparse
observations in two different settings. First, the body pose serves as
the driving signal. Then, we use our pattern registrations obtained
from two opposite-facing cameras as the driving signal. We show
qualitative results and report the numerical driving errors in each
case.

7.1 Evaluating the 3D Registration Accuracy
7.1.1 Triangulation. Figure 7 evaluates the coverage of our trian-
gulated point clouds and the average visibility of different cloth
regions. The precision of the registered point cloud we obtained
from RANSAC triangulation is at least 3 inlier intersecting rays
within an intersection radius of 1 mm.

7.1.2 Comparison to Related Work. Figure 11 showcases our regis-
tration quality by projecting our registered surface to the original
image as a wireframe and our reconstructed cloth surface on the left.
On the right we show comparisons with related work. We compare
our registered meshes with our implementation of cloth registration
pipeline in ClothCap [Pons-Moll et al. 2017]1. In this method, a
kinematic body model is used to track a single-layer surface describ-
ing the clothed subject. Using the T-pose frame, the cloth topology
is segmented from the single-layer topology and used to define a
cloth template. Then, this cloth template is registered to the clothing
region of the single-layer surface using non-rigid Iterative Closest
Point (ICP). For better initialization, we used Biharmonic Deforma-
tion Fields [Jacobson et al. 2010] to align the boundary between the
deformed template and the target mesh such that the interior distor-
tion is minimal as suggested by Xiang et al. [2021]. We also compare
our registered meshes to those produced by the inverse rendering
optimization stage presented by Xiang et al. [2021], which aimed to
refine the non-rigid ICP registration described above. Finally, we
compare our reconstructed geometry to the unregistered multi-view
stereo reconstruction [Yu et al. 2021].

1We use our implementation of ClothCap [Pons-Moll et al. 2017] for all the comparison.

Visual examination of the registration results reveals a few obser-
vations. First, the reconstruction quality, especially in the wrinkles,
is the best with our registration pipeline, even when compared to the
unregistered multi-view stereo reconstruction [Yu et al. 2021]. Sec-
ondly, since our method does not rely on a kinematic body model for
its operation, it is stable evenwhen the clothmoves tangentially over
the body or detaches from the body, as can be seen by examining the
sleeve region in Figure 11. On the contrary, ClothCap [Pons-Moll
et al. 2017] relies on the kinematic body model and shows artifacts at
the sleeve region where the cloth is not perfectly overlapping with
the body model. More severe instability due to tangential movement
appears in the supplementary video. Similarly, Xiang et al. [2021]
also rely on the body kinematic model for initialization, but later it
refines the registration using inverse rendering optimization. This
stage helps fix the initial artifacts but is vulnerable in the invisible
cloth regions, such as the armpits and the areas occluded by the
body parts, producing artifacts visible in Figure 11 and 14 and more
severe artifacts visible in the supplementary video. Additionally, the
photometric optimization produces more blurred geometry since
the geometry is modeled by an autoencoder (bottleneck effect). On
the other hand, our registration pipeline has smooth results, even
in the invisible regions.
Figure 12 showcases a few sampled frames from our registered

mesh sequence, and Figure 13 displays the different subjects and
zoom-in to compare the rendered registered mesh with the captured
images.

7.1.3 Error Metrics. Common error metrics such as pixel repro-
jection and rendering errors are hard to transfer from one capture
system to another. To provide reproducible metrics that are invari-
ant to the specific multi-view camera setting, we propose two novel
absolute measurements. The first is the correspondence drift rate
in [mm/sec] units. The second is the average geodesic distortion
in [mm] over the sequence of frames. Table 1 reports these metrics
for our work that future work can reference when accurate ground
truth is unavailable.

To measure the correspondence drift rate, we unwrap the image
texture to the UV domain and measure the optical flow. We translate
the optical flow magnitude to correspondence drift rate in [mm/sec]
units, using the square size calibration and the known camera frame
rate. We also report the per-frame average geodesic distortion (a.k.a
Gromov Hausdorf distortion) w.r.t a reference frame in a T-pose.
To this end, we randomly sampled the vertex pairs, measured their
pairwise geodesic distance, and compared it to the geodesic distance
measured in the reference frame. We used pygeodesic implementa-
tion of the exact geodesic algorithm for triangular meshes [Mitchell
et al. 1987]. We don’t report the Chamfer distance to the recon-
struction surface extracted from the multi-view stream using the
work of Yu et al. [2021] because our reconstruction quality is better
than this ground-truth candidate, leaving this measurement too
coarse for evaluation. The table clearly shows that our correspon-
dence drift rate is negligible relative to the compared methods. Our
geodesic distortion is significantly lower. The former is directly
related to the drift a texture applied to the geometry will exhibit.
The latter is related to the deviation of the reconstructed geometry
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Fig. 11. RegistrationQualitative Evaluation. From left to right 1) projecting our registered mesh with a wire-frame texture (aligned with the pattern square
grid) to the image 2) Registered mesh geometry: a. ours b. multi-view stereo reconstruction [Yu et al. 2021] c. body tracking + Non-rigid ICP using [Pons-Moll
et al. 2017] d. body tracking + Non-rigid ICP using + photometric optimization [Xiang et al. 2021].

Fig. 12. Several sample frames from our multi-view aligned mesh sequence.
Each row represents a different subject.

from the expected one, assuming the cloth surface deforms roughly
isometrically.

We measured the registration metric also on a bigger pattern we
used to ablate our registration pipeline. The big pattern square size
is 4 mm, compared to the pattern we use of size 2.67 mm. We hoped
those metrics would help compare those patterns, but the errors
reported in the table for both patterns deviate from others within
the precision of the optical flow and geodesic distortion measure-
ment techniques, which are both approximately 1 mm. Hence, we
conclude that we should devise a measurement with sub-millimetric
precision to analyze the difference between them quantitatively, as
the standard measures are too coarse.

Finally, Figure 14 shows our coherent texturemapping, as opposed
to other registrationmethods for which the texture jitters and distort.
We include the full videos in the supplementary material.

7.2 Driving from sparse observations
7.2.1 Driving from pose. To demonstrate that our accurate cloth
registrations can enhance existing cloth driving methods, we evalu-
ate the driving method proposed by Xiang et al. [2021] once with
their registration data, which refines ClothCap registration [Pons-
Moll et al. 2017], and once with our cloth registrations. Figure 15
shows the improved wrinkle modeling in the animated geometry
and Table 2 reports the corresponding errors in the predicted ge-
ometry, showing a clear advantage for the network trained with
our accurate registration. Alongside the improvement in the ge-
ometry, our registrations also promote a significant improvement
in the appearance modeling. It resolves the challenging problem
that all the codec-avatar methods face when trying to recover both
unknown textures and unknown geometry from a given capture.
Without accurately anchored geometry, the appearance, optimized
by inverse rendering, achieves poor results for non-trivial textures,
see Figure 16.

7.2.2 Driving from Pattern Registrations. Here, we showcase the
results of our sparse-view animation module trained with our high-
quality registered clothes data. We evaluate the generalization of
our driving network for the different deformation sequence that
appears in the test set. Figure 17 shows selected sample frames of
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Fig. 13. We captured 4 subjects performing different kind of motions like jogging, hand cloth interactions, and torso rotation. Our method provides precise
registration on regions of good visibility and a reasonable approximation on regions with reduced visibility (e.g., armpit and hand contact points). Precise
registration on regions with fold overs (right) remains challenging to our current system.

Table 1. Quantitative evaluation of the registration method

Registration errors
Method Correspondence drift rate [mm/sec] Geodesic distortion [mm]
Our pattern registration 1.50 9.27
Our pattern registration (big pattern) 0.77 9.98
Body tracking + non-rigid ICP [Pons-Moll et al. 2017] 72.3 25.94
Body tracking + non-rigid ICP + IR optimization [Xiang et al. 2021] 64.6 35.49

Table 2. Driving metric evaluation

Driving errors w.r.t. ground truth registered surfaces
Method Euclidean distance [mm] Chamfer distance [mm]
Our pixel registration driving (surface kinematic model) 2.08 1.59
Our pixel registration driving (LBS model) 7.22 4.05
Pose driving [Xiang et al. 2021] trained with our registrations 15.89 5.05
Pose driving [Xiang et al. 2021] trained with non-rigid ICP registration 22.64 5.42

Fig. 14. From left to right: along the deformation sequence, custom texture
is overlayed coherently with our registration (1), while with (2) [Xiang et al.
2021] and (3) [Pons-Moll et al. 2017] the texture jitters and distort

the resulting animated cloth sequence. Since our method processes
a dense driving signal, while pose-driven neural models rely on
the sparse skeletal joint parameters, we cannot directly compare
them. Whether to apply pose driving or drive from pixel registration

depends on the specific application. Figure 18 shows the level of
detail and realism that the pixel registration driving adds to the
final driving results. We show the pose-driven network [Xiang et al.
2021] and our pixel registration-driven model, both trained with our
high-quality registration data, differing in the driving mechanism.
Table 2 reports the driving errors for each driving method. Finally,
to empirically justify our choice of the surface kinematic model, we
ablate the kinematic model used to estimate the coarse geometry in
our method. We report the driving errors when LBS is used as the
kinematic model and when we use our surface kinematic model.

8 DISCUSSION, LIMITATIONS AND FUTURE WORK
We developed a pattern registration and surface alignment pipeline
producing a dynamic sequence of tracked meshes representing the
cloth deformation in a fine-grained resolution, low localization error,
and correspondence accuracy significantly better than any prior art.
We design our pattern detector to be robust to illumination due to the
pattern primitives (processed in grayscale), the significant contrast
between adjacent cells, and the extensive image augmentation we
applied in training.
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Fig. 15. Qualitative evaluation of the animated geometry training for pose
driving with our registrations (top) and with ClothCap [Pons-Moll et al.
2017] registrations (bottom)

Fig. 16. Our high-quality cloth registrations improve the performance of
the appearance model in the pose driving network. Training for pose driving
with our registrations (left), and with the registration pipeline in [Pons-Moll
et al. 2017] (right)

We design our system to be garment-agnostic by avoiding body
priors, instead modeling the garment as a general non-rigid surface.
We demonstrated robustness of our system in challenging occlusion
and deformation configurations produced by hand-cloth interac-
tions. Based on Figure 7, we expect our system to provide good
registration of dynamic garments under moderate surface visibility
(>60%). Please refer to the supplementary material and video for
registration results obtained with a patterned skirt. We could model
garments with changing topology as long as a template continuously
deforms to the different configurations (for a jacket, we would use
an unzipped mesh as template). We could extend our deformation
model to include local scaling parameters to support highly stretchy
materials, like spandex.

Fig. 17. A selected set of frames of our cloth sequence animated from two
cameras pixel registrations: frontal view (top), and rear view (bottom).

Fig. 18. Pixel registration driving (right) enhances the driving results’ realis-
tic geometry modeling compared to pose driving (left).

As an application, we demonstrated that our cloth registration
technique could improve existing pose-driving methods by training
themwith our accurate registrations without changing the inference
protocol. Finally, we proposed a drivable Garment Avatar model
generating realistic cloth animation facilitated by a dense tracking
signal obtained from two roughly 180◦ opposing cameras capturing
our patterned garment. We focused on this setup because it is more
accessible than 3+ views and maximizes the optical coverage under
the two-cameras constraint. Our experiments show that the entire
surface is reconstructable even when triangulation is impossible,
given only a single observation per surface point. This work aims
to provide a proof of concept for driving from a dense tracking
signal and doesn’t intend to handle the most generic case, which
we deferred to future work. We discuss these limitations below.
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8.1 Limitations
Our registration coverage is currently limited to portions of the
cloth with surrounding 3 × 3 visible cells. Regions with lower visi-
bility (2 × 2 or 1 × 1 cells) could be localized using other existing
priors. Regions where the pattern is not visible (see fold over on
Figure 13 right) would require further detection and modeling effort.
To guarantee high surface visibility in the data registration stage,
we used a large number of cameras. In the supplementary material,
we analyze the surface coverage and the registration accuracy ver-
sus the number of cameras to estimate how our method performs
in a smaller setup. Guaranteeing fully collision-free results (while
satisfying observation fitting and temporal smoothness) remains
challenging. Using finer temporal and spatial resolutions or doing
multiple sequential pass registrations are directions that could al-
leviate collision but were not explored due to computational cost
(we prioritized scalability). Template construction requires manual
intervention to close seams. Further supervision of the cloth fab-
rication process and exploring relevant works for automatization
[Grim et al. 2016; Halimi and Kimmel 2018; Halimi et al. 2019b] are
left for future work.
Similar to existing cloth driving models, our Garment Avatar

model does not handle driving of an unseen garment. Capturing
a larger corpus of garments and exploring architectures supporting
shape and material variations would be an exciting research direc-
tion. Our setup assumes two cameras with known calibration,
similarly to many pose-driven methods [Bagautdinov et al. 2021;
Xiang et al. 2021] that use two cameras (or more) to triangulate
the user’s 3D pose. Auto-calibration could rely on the co-detection
of human body landmarks in different views. The current form as-
sumes the same view configuration at train and driving time.
We could train the model with random camera combinations to
allow new camera positioning at inference. To handle the arbitrari-
ness in the camera provided in each channel, we could add the ray
direction 3D field as a context to the pixel coordinates signal. One
can expect a decrease in optical coverage under a disadvantageous
positioning of the cameras. Hence, shape completion in regions
uncovered in different camera placements is a relevant direction to
pursue, incorporating non-visual priors. Furthermore, our anima-
tions exhibit oscillations in large undetectable areas of the cloth,
for example, when the hand occludes the shirt (better to observe in
the supplementary video). In this case, our pattern-based driving
also produces sub-optimal results, while using non-visual priors
in conjunction with the pattern could improve our approach. Our
current effort targets high quality over runtime performance; see
the supplementary for the per-module computation-time. Future
work would seek to optimize our driving model to enable real-time
performance.

8.2 Future directions
We aim to explore end-to-end models that jointly learn cloth defor-
mation priors while fitting visual observations to improve registra-
tion quality. To this end, we plan to take advantage of differentiable
rendering frameworks to increase registration coverage. At the
same time, the current pipeline could produce doubled resolution
by registering the corners with the centers.

To enhance the driven reconstruction along the seams, we plan
to implement our pixel-driving network in the mesh domain, uti-
lizing mesh convolutions and mesh pooling and un-pooling layers
[Hanocka et al. 2019; Zhou et al. 2020] which will replace the current
layers in the UV domain. Our driving model operates independently
per frame, exhibiting slight temporal jitter. We plan to overcome this
issue by constructing a recurrent architecture for cloth animation
[Santesteban et al. 2019, 2021].
We consider that our current dataset could benefit existing and

novel research on building realistic models of cloth deformation.
For instance, the dataset could help fine-tune simulation methods,
improve cloth deformation inference from body pose and shape,
and facilitate novel hand-cloth interaction models. Recently, a self-
supervised model for learning cloth dynamics was introduced in
[Santesteban et al. 2022]. Their model overcomes the requirement
to generate simulation training data, supervising the model using
a physic-based loss. An interesting analysis would be inferring
the material parameters from our mesh sequences, training their
self-supervised model with those parameters, and comparing the
produced sequences to our pose-driving results. Finally, we left the
appearance modeling completely unexplored. However, we demon-
strated a highly coherent texture signal when projecting the camera
images to our accurate geometry, see Section 7.1.3. The latter implies
that learning the function that maps geometry to shading from pure
observations should be feasible.
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