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Shape matching and comparison are important for understanding the world we live in. The problem is especially challenging for non-rigid objects. 
Understanding the geometric nature of surfaces plays a major role in the work of a radiologist who needs to decipher an MRI image of the brain, or of 
a dress designer who is customizing a wedding dress. This year, geometry-capturing devices have become a popular commodity product: The Kinect 
is a single-pattern triangulation sensor that Microsoft has been selling with great success, and Lenovo plans on using a somewhat cruder technology 
based on time of flight to interact with its gaming boxes in China; Sony has joined the party with the planned release of a geometric sensor by next 
year, and InVision has developed a low-cost accurate multi-pattern triangulation sensor.

All this is just the tip of the iceberg. Man–machine interfaces are experiencing a revolution. As we work to acquire the geometric structure of objects, 
questions arise: How can we measure the similarity between two instances of the same heart at different times of a cardiac cycle? How can we match 
a glove and a hand, or recognize a face by its geometric structure?

As sensors improve, accurate analysis tools need to be developed. To handle such data, we try to apply tools of metric geometry analysis and turn 
them into computational methods. An example is the Gromov–Hausdorff distance, which quantifies the discrepancy between metric spaces. Until 
recently, it was applied mainly in theoretical explorations of metric geometry—in the celebrated Hamilton–Perelman proof of the Poincaré conjecture, 
for example.

An intuitive application of non-rigid ob-ject comparison is the identification of people by bio-geometric measures, or biometry. Our faces, hands, 
and legs change slowly in time yet still serve as an excellent identity measure when we want to distinguish between people.

Biometry appears in biblical stories and fairy tales. Jacob got the blessing of Isaac by pretending to be his brother. Little Red Riding Hood used 
feature-based face recognition to reach the amazing conclusion that she was talking to a wolf rather than 
her grandma. The prince found his true love by matching the non-rigid shape of Cinderella’s foot to 
a rigid template—a glass slipper. Biometry obviously plays a role in modern times. O.J. Simpson was 
acquitted of murdering his wife because the glove found at the scene of the crime did not match his hand; 
recently, he allegedly confessed to committing the crime. The case is a good demonstration that shape 
matching must be applied with great care. So how should we match a hand with a glove?

I should confess to a personal interest in biometry. During my first years as a professor at the 
Technion, I met a pair of identical twins who eventually became my students. Their project was to 
construct an expression-insensitive system that could distinguish between them based on the geometry 
of their faces. This project was an important milestone in our fascinating journey of exploring invariant 
measures and computable geometric structures.

Certain properties could allow us to translate the relevant shape-matching problems into computable 
measures. It appears that intrinsic geometry is an approximate invariant of many natural objects—a 
hand in different positions, for example, or a face with various expressions. We can therefore state that 
the intrinsic geometry of a facial surface corresponds to the identity of the person, while the extrinsic 
geometry reflects facial expressions. In other words, when we consider the face of a single person under 
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Figure 1. Which metric best captures the 
invariance properties of non-rigid articulated 
shapes?

Figure 2. Identical twins: Alex Bronstein, 
now a professor at Tel Aviv University (left), 
and Michael Bronstein, a professor at USI 
Lugano, in Switzerland (right). 



various expressions, geodesic distances between surface points are better preserved than Euclidean distances.

 

Efficient tools for matching and comparing rigid objects, such as the iterative closest point, have existed for more than three decades. Only recently, 
though, have scientists considered the application of these methods to non-rigid objects. How can we extend these tools and compare the intrinsic 
geometry of faces?

Consider the following formulation of the Gromov–Hausdorff distance,

where

and

 

Points from surface Q are associated to points of S (through C) such that the distances between corresponding pairs on the two surfaces are as 
close as possible in a min–max sense. At first glance the measure reads like a hard-to-compute permutation problem. We can explore an alternative 
formulation,

where

Here the distance can be interpreted as isometrically 
mapping S and Q into a space Z. The Hausdorff dis-
tance between the two mappings is then computed 
in Z. The optimization is over the mappings s and r 
and the space Z. Again, scanning through all possible 
target spaces seems to be hard to compute.

In the early 2000s, we fixed the target space Z in an 
attempt to make some computational sense of related 
measures. When distances in Z can be computed ana-
lytically, as in Rn, such a mapping belongs to the fam-
ily of multi-dimensional scaling, or MDS, methods. 
MDS methods are intimately related to principle com-
ponent analysis, which can be computed by singular 

Figure 3. Geodesic distances are less affect-
ed by expressions than Euclidean ones.
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Figure 4. Embedding to Euclidean space via multidimensional scaling. 



value decomposition of the inter-geodesic distance matrix. Using such a method, we built a prototype 
face recognition system.

The next step involved changing the target space from Rn to Q, where distances are available numeri-
cally, and no longer analytically. This allowed for a consistent approximation of the Gromov–Hausdorff 
distance. The result is an inherently non-convex problem. Still, efficient initializations that exploit the 
smooth structure of low-dimensional geometric problems allowed us to transform the MDS approach 
into generalized MDS, or GMDS. With GMDS, we numerically approximate geodesic distances on Q, 
and apply convex optimization techniques to solve the mapping problem. Equipped with such a power-
ful tool, we have explored intrinsic symmetries, compared various surfaces, and even experimented with 
alternative distance measures, including an affine invariant metric defined on the surface and diffusion 
distances.

With theoretical support from Facundo Memoli and Guillermo Sapiro that made it possible to 
treat sampled surfaces as metric spaces, we were able to show the Gromov–Hausdorff distance to be defined as three coupled GMDS prob-
lems. More importantly, we realized that dGH can be viewed as the motivation for GMDS, which has become a powerful tool for the analysis 
of non-rigid shapes.

Co-authors of related papers published by the author include Alex Bronstein (TAU), Michael Bronstein (USI), Freddy Bruckstein (Technion), Yohai Devir and 
Anastasia Dubrovina (Technion), Asi Elad, Nahum Kiryati (TAU), Dan Raviv (Technion), Guy Rosman (Technion), Guillermo Sapiro (UMN), Nir Sochen (TAU), 
Irad Yavneh (Technion), and Gil Zigelman.

Readers can find a reference list in Numerical Geometry of Non-rigid Shapes (Bronstein, Bronstein, and Kimmel, Springer, 2008) and on the author’s website 
(www.cs.technion.ac.il/~ron).
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Figure 5. Embedding into curved domains, 
where distances are evaluated numerically 
via generalized multi-dimensional scaling.

Figure 6. Computing intrinsic symmetries. 

Figure 7. Computing an affine invariant Voronoi diagram that 
could be used as an alternative distance within dGH. 


