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Figure 1: Four corresponding eigenfunctions textured mapped to the same individual at two different poses (top and bottom), before (pink
background) and after (green background) alignment.The first four on the left are eigenfunctions 2-5, followed by 12-15, and 22-25 on the

right.

Abstract

When matching non-rigid shapes, the regular or scale-invariant Laplace-Beltrami Operator (LBO) eigenfunctions could poten-
tially serve as intrinsic descriptors which are invariant to isometric transformations. However, the computed eigenfunctions of
two quasi-isometric surfaces could be substantially different. Such discrepancies include sign ambiguities and possible rota-
tions and reflections within subspaces spanned by eigenfunctions that correspond to similar eigenvalues. Thus, without aligning
the corresponding eigenspaces it is difficult to use the eigenfunctions as descriptors. Here, we propose to model the relative
transformation between the eigenspaces of two quasi-isometric shapes using a band orthogonal matrix, as well as present a
framework that aims to estimate this matrix. Estimating this transformation allows us to align the eigenfunctions of one shape
with those of the other, that could then be used as intrinsic, consistent, and robust descriptors. To estimate the transformation
we use an unsupervised spectral-net framework that uses descriptors given by the eigenfunctions of the scale-invariant version
of the LBO. Then, using a spectral training mechanism, we find a band limited orthogonal matrix that aligns the two sets of

eigenfunctions.

1. Introduction

One of the challenging problems in geometry processing is find-
ing shape correspondence. First attempts to solve the matching
problem used point descriptors which can be divided into extrin-
sic and intrinsic ones. Extrinsic descriptors are based on geomet-
ric properties that describe the embedding of the surface in R3,
like the surface normal at a point, the mean curvature, the area en-
capsulated by spheres of varying radii about a point, etc. These
measures are sensitive to poses and postures of articulated objects
[STDS14, WBCPS18, ZWL19]. At the other end, intrinsic mea-
sures, expressed solely in terms of the metric tensor, are known
to be invariant to those natural deformations, that are modeled as
isometry to a very good approximation. That observation lead to a
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school of thoughts in the field of shape analysis that promotes treat-
ing shapes as metric spaces [HRAK19, MS05, BBK06b, BBK06a].

LBO eigenfunctions exhibit an exclusive advantage as intrinsic
descriptors, being an orthnormal complete set. As such, they fully
determine the spectral transformation, unlike other descriptor func-
tions whose support vanishes at certain spectral domains such as
the heat kernel signatures [SOGO09] and the wave kernel signa-
tures [ASC11], that are supported only on the symmetric modes.
In [Rus07] it was first argued that the LBO eigenfunctions could
serve as descriptors for shape correspondence, yet, the misalign-
ment issue was not addressed directly. In practice, the LBO eigen-
functions are so poorly aligned between two quasi-isometric shapes
that they are rarely used as descriptors. The presented framework
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targets directly this misalignment concern. It is the first method
that solves the eigenfunctions alignment issue so effectively so that
a correspondence pipeline built exclusively upon LBO eigenfunc-
tions as dense descriptors achieves on par performance with state-
of-the art correspondence methods. Unlike other alignment meth-
ods [SK14] that can resolve only low order eigenfunctions (k < 10),
the proposed framework is scalable in the number of eigenfunctions
and shows a significant improvement of the alignment over a broad
range of frequencies, up to k = 350.

Recent efforts suggest feeding extrinsic descriptors to neural net-
works in order to learn better features [LRR*17,HLR*19,RSO19],
provided state-of-the-art results in this field. Still, such networks
are tuned to the given data and thus operate well within the domain
defined by the training data. The dependency on data can be restric-
tive, for example, in [LRR*17] a network was trained to extract de-
scriptors of human bodies as input, while in [HLR*19] a drop in
performance was demonstrated when testing the resulting descrip-
tors on super-hero imaginary figures. Even more importantly, all
the mentioned methods are confined to produce a non-linear func-
tion of a specific extrinsic descriptor known as SHOT [STDS14],
compromising to sub-optimal descriptors. Differently, the proposed
method optimizes for the most general intrinsic descriptor. In fact,
any intrinsic descriptor function can be represented by the proposed
method as a linear combination of the aligned basis functions. Fi-
nally, in the era of deep networks, a common approach is to com-
plicate the representation of the solution in-order to achieve better
performance over classical models. While this approach has ad-
vantages in numerous applications, it sacrifices our ability to ex-
plain the solution. Thus, generally, when we have two solvers of
the same problem, we prefer the explainable one. Thereby, unlike
existing methods that utilize neural networks to construct complex
descriptors, we use fundamental intrinsic descriptors and show that,
when properly aligned, they are capable of producing the same per-
formance.

To this end, we propose a novel method for shape correspon-
dence based on intrinsic descriptors defined by scale-invariant LBO
eigenfunctions. Specifically, given two shapes, we first extract their
LBO eigenfunctions and the scale invariant LBO (SI-LBO) ones.
Next, we jointly align the SI-LBO eigenfunctions in their spec-
tral domain (Fig. 1), modeling the alignment as an operation of
a band orthogonal matrix. We then use the aligned eigenfunctions
as input descriptors for the functional map framework, where the
LBO eigenfunctions are used as a basis of choice [ABK15]. The
functional map defines the spectral transformation between the two
given manifolds that can be transformed into a point-wise soft-
correspondence, see [LRR*17]. To optimize for the alignment ma-
trix we propose a novel loss defined in terms of the alignment ma-
trix and the point-wise correspondence induced from this matrix,
using the described computation pipeline. This loss measures ex-
tent to which the aligned SI-LBO eigenfunctions on both shapes
are compatible with each other, when mapped by the correspon-
dence that this alignment induces. The resulting optimization pro-
cess is straightforward, and achieved by back-propagation of the
loss gradient to the entries of the alignment matrix. We end up with
a well aligned SI-LBO eigenfunctions as well as the point-wise cor-
respondence between the shapes.

2. Related Efforts

Non-rigid shape matching techniques can be divided into several
classes. A relevant one to our discussion contains those that use
intrinsic descriptors for point correspondence and shape matching.
In [RusO7], the use of the LBO eigenfunctions weighted by the
corresponding eigenvalues was argued to construct isometric in-
variant global point signatures that were then used to classify sur-
faces via moments of histograms computed via Green functions,
also known as kernels. Next, in [OMMG10,ASC11] the heat kernel
signature, and the wave kernel signature, were proposed as point
descriptors. All these kernel signatures were computed using the
LBO eigenfunctions, where sign ambiguities were avoided by con-
sidering the squared eigenfunctions. Similar kernel signatures can
be constructed by using the scale invariant LBO [WWA™*16]. The
discrepancies between kernel signatures can be proven to be the-
oretically bounded by the deformations relating the shapes from
which they were extracted from. However, in practice, these bounds
are not tight enough leading to numerical errors that make these
descriptors inefficient for the task of dense shape correspondence.
Also, most kernel signatures are symmetric functions and therefore
cannot be used to distinguish symmetric points on the surface.

Another group of methods try to compute shape correspondence
by minimizing geodesic distance distortions of embedding one
shape into the other, which is intimately related to the Gromov-
Hausdorff distance [MS05, BBBKO0S, ADK16,SK17]. These meth-
ods often search for a permutation matrix between two sets of
sample points that approximate the given surfaces. Bronstein et
al. [BBKO6b] proposed the generalized multidimensional scal-
ing (GMDS) to search for the points permutation by gradient de-
scent that minimize a loss based on the Gromov-Hausdorff dis-
tance. In [ADKI16], the suggested spectral-GMDS method ex-
ploits the spectral domain to efficiently approximate the permu-
tation matrix, yielding a formulation that can be shown to be re-
lated to the Functional Map framework [OBCS*12]. The GMDS
evolved into relaxed quadratic assignment problems, see for ex-
ample [BK17, XLZ20]. In order to find correspondence between
two non-isometric surfaces, where the geodesic distance is not
preserved, Solomon et al. [SPKS16] used the related Gromov-
Wasserstein distance [Mém1 1] with a regularization on the entropy
of the correspondence.

Another way to construct robust intrinsic descriptors is to use
eigenfunctions of other isometry invariant operators like the eigen-
functions of the inter-geodesics distance matrix [SK17]. The scale
invariant metric can also be used for the definition of intrinsic dis-
tances, such as the scale invariant diffusion distance [WWJ*14].
For more variations on intrinsic and extrinsic descriptors we refer
to [WS19].

Another family of methods try to align the LBO eigenfunc-
tions for shape matching or shape correspondence. Shtern et al.
[SK14] considered the eigenfunctions as samples of random vari-
ables. They tried to resolve the sign and permutation ambigui-
ties of the eigenfunctions by matching their third order moments.
In [EKB*15], Eynard et al. extended the coupled diagonalization
idea, put forward in [KBB*13], and proposed a method to find a
mutual eigenfunctions basis of LBOs belonging to different shapes
by minimizing a loss that promotes joint-diagonalization. To obtain
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the mutual basis, their optimization process requires the existence
of corresponding functions on both surfaces, leading to similar dif-
ficulties as those encountered in the functional map framework.

The next group of methods include learning descriptors for
shape correspondence. Two related frameworks are the FM-Net
[LRR*17] and the unsupervised FM-Net [HLR*19]. The first is
a supervised residual neural network that learns a non-linear func-
tion operating on local SHOT descriptors [STDS14] as an input
to the functional map framework that computes the desired corre-
spondence between the shapes. Next, Halimi et al. converted the
FM-Net into an unsupervised learning framework by replacing the
supervised loss with the GMDS one. Not long after, [RSO19] sug-
gested to define the unsupervised loss in the spectral domain. See
also [GR19] for a recent unsupervised method based on a Cyclic-
loss, and [YLB*20] for a different variation on the features pro-
cessed by the FM-Net. Here, when optimizing for the alignment
of the scale invariant eigenfunctions, we use the unsupervised loss
[HLR*19] and the cyclic loss [GR19], as regularization terms to
our alignment loss.

Another concept relevant to our discussion is the self-functional
map [HK18]. There, Halimi et al. proposed a method for shape
matching by using descriptors which are defined by a multiplication
of SI-LBO eigenfunctions and LBO ones. Theoretically, the pro-
posed framework can be viewed as an intermediate point between
the self-functional maps and the unsupervised FM-Net. At one end,
we propose to learn the rotation relating the eigenstructures of the
two shapes, though there is no deep learning involved. At the other
end, we operate within a similar unsupervised Gromov-distance-
like GMDS-loss [HLR* 19, BBK06b, ADK16], to obtain accurate
dense shape matching.

3. Background

Spectral domain on surfaces. Here, we lay the groundwork the-
ory for continuous surfaces. However, it worth mentioning that our
discrete implementation operates on triangulated surfaces. A two
dimensional manifold, also called a surface S : Q € R* — R?, can
be used to define a Riemannian manifold (S, g), when equipped
with a metric tensor g. The most familiar example is the Euclidean
metric tensor

g = (gij) = ((Si,S))). )

The metric tensor can be used to define differential operators on the
manifold such as the Laplce-Beltrami Operator (LBO). Given the
parametric surface S(u,v), an infinitesimal length element on S is

defined by
ds — (dudv)( g 812 ) < du )7 ?)
g1 &2 dv

where the substitution of the Euclidean metric tensor namely, g1] =
|Su|27 812 =2821 = (Su,Sv), g11 = |SV|2, yields the Euclidean length
element. Let g = det(g) and (g"/) = (gij)fl, then, using Einstein
summation convention, the LBO can be written as

€

—Ag =
NG

div/2¢"9;, 3)
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or explicitly, operating on a function f : § — R,
1 .
—Agf = 73,( gg”af) @
g \/g, i f J

where 9; is a derivative with respect to the i coordinate, u or v,
respectively. This intrinsic definition in terms of the metric tensor
and its derivatives, makes the LBO invariant to isometries of the
surface, i.e. deformations that do not change the metric. In the case
of the Euclidean metric defined above, isometries amount to dif-
ferent embedding of the surface in R? without stretching and tear-
ing the surface. LBO is a positive semi-definite operator, therefore
the spectral theorem guarantees that the eigenfunctions form an or-
thonormal basis, that is,

Aghi = Mo
(0i,0j)¢ = &) (5)

Scale invariant LBO. The scale invariant metric was first intro-
duce in [AKR13]. It is defined by the pseudo-metric

& = IK|gij, (6)

that can be approximated by the metric,

gij = \/(K2+¢€2)gij, @)

where (g;;) is the Euclidean metric defined in Eq. (1), K is the
Gaussian curvature, and € is a small positive constant preventing the
expression from vanishing. Differently from the Euclidean metric,
where the distance between two surface points is defined as inte-
grating the locally euclidean geodesic distance, the scale-invariant
metric is defined by in Eq. (6). Intuitively, it is realized by infinites-
imally scaling the locally Euclidean length by the radius of a circle
defined by the surface. One intrinsic choice for such a local scal-
ing factor is p = |K| =1 the squared root of the Gaussian curvature.
The scale-invariant metric (g;;) induces a new LBO introduced by
Aflalo et al. as the scale-invariant Laplce-Beltrami Operator (SI-
LBO). The SI-LBO is defined by plugging the the definition of the
scale-invariant metric from Eq. (7) into the the LBO definition in
Eq. (3), namely,

1 i
—A; = ﬁai\/g?g 79;. 8)

Since the metric § is scale invariant and invariant to isometries with
respect to g, the SI-LBO is also invariant to these deformations. As
before, since it is a positive semi-definite operator, the eigenfunc-
tions form an orthonormal basis. That is,

Agdi = Aid;

(9i,0,)2 )

Il
&

Functional Maps. Functional maps were first introduced in
[OBCS*12]. There, Ovsjanikov et al. showed conceptual equiva-
lence between point-wise correspondence and functional mapping
between two different surfaces, and formulated the latter as a lin-
ear transformation 7 : 7 (X, R) — F (Y, R) between the functional
spaces defined on the surfaces X and ). Specifically, a given real
valued function f € F(X,R) on surface X', with the basis repre-
sentation f = ¥;a;0;° in a basis {¢;* } that spans F (X, R), will be
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mapped by T to the surface ) as follows,
X
T(f) = Ya,T(07) = Yeijajo) (10)
J ij

where the translation to the coefficients in the basis {(])ly } of
F(Y,R) is obtained by the functional map c;; = (q)?’,T(q)j“))y.
The functional map C' = (c;;) is derived from a set of linear con-
straints imposed by a set of corresponding descriptor functions
pairs {(f;,h;)} on the surfaces X and Y, respectively. Defining
= <¢,-X7fj> and H;; = <¢iy,hj>, the matrix C can be computed
by solving

CF = H, (11)
using a least squares method. As stated at [OBCS™12] the func-
tional map framework is not constrained to a specific choice of
basis, however, in [ABK15], Aflalo et al. showed that the LBO
eigenfunctions are the optimal k-dimensional reduced basis and
that this selection, which can be regarded as a low pass filter op-
erating on the mapped functions, leads to a smooth correspondence
map. Therefore, similar to [HK18], in the proposed method we set
the basis functions to the LBO eigenfunctions, denoted by ® and
W, on surfaces X and ), respectively. In this paper, we use the
SI-LBO eigenfunctions denoted by & and U, as descriptors on sur-
faces & and ), and we calculate the functional map by solving (11)
with the following matrices

Ej = (0i,0)) (12)
and

Hij = (¥i,¥j)e. (13)

As previously discussed, when computed, the eigenfunctions are
very poorly aligned undermining the assumption of compatible de-
scriptor functions. Here, we derive an optimization process pro-
ducing well aligned SI-LBO eigenfunctions. We used the aligned
SI-LBO eigenfunctions in the definition of the matrices (12), (13),
then, solve for the functional map C, and finally extract from C
the point-wise correspondence.

Deep functional maps. Our optimization algorithm for the align-
ment of the eigenfunctions is based on FM-Net architecture intro-
duced in [LRR*17]. In their paper, Litany et al. suggested to use a
neural network in order to find descriptors tuned to be optimal for
the functional map framework. Their residual network [HZRS16]
based architecture receives a hand-crafted semi-local extrinsic de-
scriptor called SHOT [STDS14], as an input, and outputs a learned
descriptor of the same dimension, optimized for the network train-
ing task. They trained the network with the following loss function

1 *
bup(X.Y) = 37 Y Y pdpmtx), (14
xeXyey

where P j = p,;)|x(;) is a stochastic matrix derived from the func-
tional map C, indicating the probability that a vertex x(i) will be
mapped to the vertex y(j). The internal sum measures for each
point x € X, the expectation of squared geodesic distance be-
tween the predicted matched point y, with probability gy, and the
ground-truth mapping 7*(x). Then, the external sum averages this
expectation over the points in surface X'. The relation between the

functional map C' and the stochastic matrix P is given by
P = (|\IIC<I>T|A> : (15)

where |- | is a pointwise absolute value, A is a column-wise L,
normalization and o is a self-Hadamrd product. For further details
please refer to [HZRS16, HLR* 19]. In the end of the training, the
hard correspondence II is extracted from the soft correspondence
P as follows

1 if i=argmax Py;
Hij = k . (16)
0 else

Unsupervised deep functional maps. Our alignment method
leverages the unsupervised loss introduced in [HLR*19] as a part
of the optimization objective. While FM-Net [LRR*17] is a su-
pervised method, Halimi e al. [HLR*19] used an unsupervised
loss based on the generalized multidimensional scaling (GMDS)
[BBKOG6b], that does not require the ground-truth correspondence
for training. The unsupervised loss requires only the inter-geodesic
distances matrix, where each entry represents the surface distance
between two surface points, without the need for point to point
matching that is required in the FM-Net model. The suggested un-
supervised loss measures the inter geodesic distance distortion of
the correspondence, that is,

1
funsup(X,Y) = ‘2||DX—PTD3;PH%. (17)

|2
Where Dy and Dy are the inter-geodesic distances matrices of
the shapes X and )/, respectively, and P is the stochastic matrix
derived from the functional map C, as in Eq. (15).

4. Method

Our method solves efficiently the misalignment of the SI-LBO
eigenfunctions, reclaiming their power as intrinsic independent de-
scriptors that also span any function on the surface. We start by
discussing our alignment model, then we define a novel optimiza-
tion problem to find this alignment, finally we describe the frame-
work used to solve the optimization problem. The final result is
1) two sets of well aligned eigenfunctions and 2) point-wise cor-
respondence obtained by applying these sets as descriptors in the
functional map framework.

Alignment Model. Let {§;} and {{;} be two set of SI-LBO eigen-
functions, computed on the (quasi-) isometric surfaces X and Y, re-
spectively, and let @, ¥ be the matrices containing the eigenfunc-
tions as columns. In practice, the ordered sets of eigenfunctions
are a-priori incompatible due to sign ambiguities and possible per-
mutation between adjacent eigenfunctions. While these ambiguities
are generally accounted for in previous methods that aims to align
the LBO eigenfunctions [SK14,HK18], sign and permutation alone
fall short of spanning the whole variety of possible transformations
between the sets of eigenfunctions. For example, Fig. 2a demon-
strates a case in which the eigenfunctions evaluated on shape X are
given as a superposition of the eigenfunctions of shape ), using the
ground truth mapping between X’ and shape ).

Therefore, it is clear that the alignment transformation should be
relaxed to a broader form. The first improvement we suggest is to
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(b) The aligned eigenfunctions after the optimization process. Our algorithm

successfully aligned these eigenfunction by finding a suitable rotation in the
spectral domain.
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Figure 2: Subspace alignment of eigenfunctions.

model the alignment as a band-limited orthogonal transformation
C, that admits
mé=ec’,

II*®C =¥ or alternatively (18)

implying that the eigenfunctions of shape X undergo a rotation
such that the ground truth correspondence m:x—-Yy maps the
rotated eigenfunctions &C exactly to ¥. We require that C' is or-
thogonal since it should operate on a real-valued orthonormal basis
&, and produce one (H*)_l\il, assuming the surfaces are isomet-
ric. Our motivation for a band restricted form is that eigenfunctions
tend to create superposition, as in Fig 2a, only with adjacent eigen-
functions that correspond to similar eigenvalues. Empirically, this
coupling tends to increase with frequency, involving more eigen-
functions, thus leading to funnel shape structure of the numerical
support of the matrix C, as can be seen in Fig. 3. We understand

Figure 3: Left: Values of C' mapping between the eigenfunctions
of two SI-LBOs corresponding to two surfaces. Indeed, the matrix
exhibits a banded unitary (funnel) structure. Right: The mask by
which R is restricted. None zero values are allowed only in the red
region.

this effect as follows; In [ASC11], Aubry et al. analysed the error
between corresponding eigenvalues of two quasi-isometric shapes,
and found it is proportional to their magnitudes. On the other hand,
according to Weyl’s Law applied to 2-manifolds, the asymptotic in-
crement between eigenvalues is constant. Combining the two argu-
ments, as the eigenvalues increase, the ratio between the error and
the spectral separation behaves asymptotically as a linear function
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of the eigenvalues, and therefore of N(A), the index of the eigen-
value. Intuitively, this ratio determines the coupling radius in the
spectral domain, which is the maximal difference between the in-
dices of eigenfunctions, that still couple beyond some threshold.
Since this radius grows linearly with N(A), we model the funnel
width as a linear function of N (). The specific equation appears in
the next section.

The second improvement in the alignment model is achieved
by observing that every orthogonal transformation can be decom-
posed into a multiplication of two identical unitary transformations,
namely,

C = RR (19)
where R represents half of the rotation applied by the original
transformation C'. Thus, we replace Eq. (18) by the requirement
for a band-limited orthogonal transformation R, that admits

m*®R=V9R" (20
Fig. 2b shows that our alignment model can recover the compati-
ble eigenfunctions even under complex misalignment transforma-
tions. Empirically, we found that the second model, that apply the
alignment on both shapes, is easier to optimize for compared to the
model that operate only on a single shape, thus, we adopt it to our
method.

Optimization objective. Eq. (20) cannot be solved directly to ex-
tract the optimal alignment matrix R since we do not assume that
we have access to the ground-truth correspondence IT* between the
shapes X and Y. In fact the point-wise correspondence is the tar-
get of our method, together with the optimal alignment. Therefore,
we design an optimization problem that simultaneously solves for
both. We define a novel optimization problem based on the align-
ment equation introduced in (20)

ITH(R)®R—-FR" |72,
I¥RT |2,y

1 ; 2y

align(

where II(R) is no longer the ground-truth correspondence, but
rather the hard point-wise correspondence obtained by using ® R
and WRT as descriptors in the FM pipeline, implying it depends
on R. The specific form of the hard correspondence II(R) is ac-
cording to Eq. (16) in the background section, and we elaborate it
explicitly in the next section. While in theory, the correct alignment
R* is the global optimum of éalign’ in practice it is challenging to
reach this optimal value due to mutual dependency of the optimiza-
tion variables, in the loss definition. Specifically, the evaluation of
R is unreliable due to the definition of galign in terms of IT(R),
which is erroneous in the beginning of the optimization process
and vice versa, II(R) is evaluated unreliably as long as R hasn’t
converged. To stabilize the optimization, we introduced two addi-
tional terms that operate separately on each of the variables. First,
we evaluate the precursor of II(R) in the computation pipeline,
namely P(R), see Eq. (15) and also the elaboration in the next
section. Specifically, the soft correspondence matrix P(R) is eval-
uated, using the unsupervised loss in Equation (17), that is,
Lunsup(R) =

‘2||DX P(R"DyP(R)|F. (22

|X
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This loss introduced in [HLR*19] measures the metric distortion
induced by P(R), and will vanish only when P (R) approaches an
isometric permutation. As opposed to IT(R), P(R) doesn’t include
argmax operation, rendering the optimization objective funsup (R)
smoother. Secondly, we considered the following loss term, evalu-
ating to which extent R satisfies the requirement of being orthogo-
nal. To this end, we introduce

1
luni(R) = 5 ||IRR" ~ I, 23)

where k is the number of eigenfunctions and I is the identity ma-
trix. However, in practice this loss is extremely non-smooth and
we found that it makes the optimization challenging. Therefore, we
decided not to use it as a regularization. As a final optimization
objective we used

E(R) = éalign(R) + Munsup(R). 24)

Interestingly, while we optimized exclusively on /( R), we found
that £,,,; (R) has strong correlation with ¢ align(R); While only
uni (R) followed the trend of ealign
areached a very low value. This phenomena is demonstrated in the
supplementary. The band restricted support of R wasn’t penalized
for, but rather enforced structurally, as discussed in the next section.

monitored, ¢ (R) and eventually

Optimization framework. To find the alignment R that opti-

PUEY

ca”|) 11 E(R)‘

U [o7
ary

Figure 4: The proposed numerical solver for the alignment R,
starting with the input SI-LBO eigenfunctions ¥, ®, that are multi-
plied by matrix R and RT, respectively. Then, the results are used
as functional correspondences for the functional map scheme with
W and & as bases. The output is the dense correspondence matrix
P. Properly projecting P into the permutation IT we compute the
loss function and back-propagate the gradient to optimize for R.

mizes the loss (24), we employ the core Functional Map module
of [LRR*17] in a shallow network designed as a numerical solver,
see Fig. 4. network optimizes over the the entries in the matrix R,
using back-propagation to estimate the loss gradient with respect to
R and to update the entries every optimization step. To account for
the band restricted structure of R, we enforced the funnel shape by
multiplying R element-wise with a funnel shaped binary mask, as
can be seen in Fig. 3 (right). We modeled the support of the mask
matrix using a linearly increasing band width

W = H b, 25)
a

where W; is the width of the i’th row, and b and a are hyper-
parameters. Next, we describe the architecture of the optimizer.
Given two input shapes X and ), we extract the SI-LBO eigen-
functions of each shape, denoted by ¥ and ®, respectively. The

first shape’s eigenfunctions, @, are then multiplied by a band uni-
tary matrix R, and the second shape’s eigenfunctions, ¥, are mul-
tiplied by the transpose of the same matrix RT. We use the aligned
bases ®R and ® R’ as descriptors for the functional map scheme
to extract the functional correspondence C, similarly to equation
(11). We define the projection of of the descriptors on the LBO
eigenbasis as

a = (®R,®),, e R
B = (IR, W), e R (26)

where d is the dimension of the descriptor (= number of SI-LBO
eigenfunctions), k is the number of LBO eigenfunctions, and fi-
nally, gx and gy are the Euclidean metric tensors on surfaces
X and ), respectively, by which the corresponding LBO’s were
constructed (note that the projected scale invariant descriptors,
and (3, are in fact the aligned self functional maps of each shape,
as introduced in [HK18]). Then, we calculate the functional map
c’ = a\B. Here, \ denotes the least squares solver. Then, using
Eq. (15), we construct a soft-correspondence stochastic matrix P,
similarly to [HLR* 19, LRR*17],

P = (|[wca’|M)°. @7)

The hard correspondence IT is then extracted from the soft corre-
spondence P as follows. Each column of the matrix P is associated
with a vertex from X', and the index of the maximal value along
each column represents the corresponding vertex in ). Therefore,
we approximate the permutation matrix IT, by

1 if i=argmax Py;
I = k . (28)
' 0 else

Finally both IT and R (as well as RT) are used in the loss defini-
tion (24), and the convergence of this loss produces simultaneously
the optimal alignment R, and the point-wise correspondence IT.

5. Implementation

Implementation considerations. The proposed framework was
implemented in Tensorflow [ABC*16], while the data pre-
processing in Matlab. It is important to stress that there is no deep
learning involved, though utilizing the optimization mechanism of
TensorFlow has proven to be really useful. In our experiments, we
used 352 SI-LBO eigenfunctions as descriptors, the same num-
ber used in the [HLR*19, LRR*17]. The parameter A in the op-
timization objective (24) was empirically set to 200. The hyper-
parameters of the mask model in Eq. (25) were set to a = 2.5 and
b = 2. We initialized R as a diagonal matrix, where each diago-
nal element was randomly set to 1 or —1. Since the optimal R has
a band unitary structure, this initialization gives the optimization
process a head start. We used 1000 iterations for the optimization
process. When evaluating the gradient of term (21), we considered
only the gradient of the numerator with respect to the alignment
matrix R, while the denominator was only used for dynamic scal-
ing of the gradient. Our algorithm consumes approximately one
minute for building the computational graph in Tensorflow, and six
minutes for the optimization process, that was performed on Nvidia

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.



A. Bracha, O. Halim, R. Kimmel / Shape correspondence by aligning SI-LBO eigenfunctions

GTX 2080 GPU. This time does not include hyper-parameter tun-
ing; As described below, our algorithm uses a hyper-parameter &
for the definition of the SI-LBO operator. For more details, see the
above section and the supplementary material.

Pre-processing. We evaluated our method on FAUST [BRLB14]
dataset. For each model, we calculated the LBO eigenfunctions and
the eigenfunctions of the generalized SI-LBO, derived from a met-
ric tensor of the general form

gij = K[*g. (29)
The discretization of generalized SI-LBO operator is given by
L= (K[*4)~'w, (30)

which, for simplicity, will be referred to as SI-LBO. Here, K is the
Gaussian curvature, W is the cotangent matrix and A is the ver-
tex area diagonal matrix. The scalar & € (0,1] determines a met-
ric interpolating between the regular and the scale invariant one,
was chosen to be the one providing the best match for each pair of
shapes, see supplementary.

6. Experiments

Simultaneous correspondence and alignment. We show cor-
respondence results on FAUST [BRLB14] dataset, reporting the
correspondence error on 100 pairs; For each subject, we evalu-
ate the correspondence between the first pose and the other poses.
We compare our method with [HLR*19], running it in the self-
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Figure 5: Comparison of the matching quality of the different
methods proposed in the paper, and the self-supervised FMNet. We
see the potential quality in the case of perfect isometry, which ex-
plains the improvement of adding the cyclic loss.

supervised operation mode, on each of the pairs. The correspon-
dence results are reported in Fig. 5, showing similar performance
of the two methods. Our method is more accurate than the self-
supervised network, as can be seen in the domain of small geodesic
radius, while it also suffers slightly more of global mismatches,
scoring a bit lower for large geodesic radius. We emphasize that
our descriptors are the aligned SI-LBO eigenfunction, while the
descriptors of the self-supervised method are the output of a deep
network. Fig. 1 demonstrates qualitatively the aligned sets of eigen-
functions for different ranges of eigenvalues. As opposed to previ-
ous alignment methods, like [SK14], that only showed alignment
of the few first eigenfunctions (1 < k < 4), our alignment is scal-
able in the number of eigenfunctions and we show consistent align-
ment up to high frequencies. Fig. 9 compares the alignment error of

(© 2020 The Author(s)
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our method to the unaligned SI-LBO eigenfunctions. We observe a
significant improvement of the alignment in a very broad range of
frequencies. Finally, Fig. 6 shows the qualitative correspondence
results.

Figure 6: Three couples of matching human body shapes at differ-
ent poses. Similar colors correspond to matched points.

Figure 7: A case where the method fails to properly align the
eigenfunctions due to symmetry of the optimization objective. In
left gray is the correspondence produced by the algorithm. Here,
the correspondence of the body is reflected (right-left). The right
box shows the aligned eigenfunctions, in which the anti-symmetric
eigenfunctions were reflected.

Analysis. In this experimental part, we aim to study the core limi-
tations of the proposed method, in order to improve the algorithm.
Our first concern in the source of the global mismatches that de-
grades the performance in Fig. 5. Analysing the qualitative cor-
respondence results, we observed that in a small fraction of the
examples the algorithm converges to the reflection of the correct
mapping, being also an isometry. In this case, the optimal align-
ment produces two anti-symmetric eigenfunctions that are related
by reflection. This phenomena is demonstrated in Fig. 7. The sec-
ond issue we would like to explore, is how the deviation from per-
fect isometry influences our alignment algorithm. We note that this
deviation influences twice; First, by perturbing the SI-LBO eigen-
functions, introducing misalignment. Secondly, by slightly mis-
leading our alignment algorithm, through the funsup (R) loss term,
which is based on perfect isometry. To analyse the second effect we
artificially inject the distance matrix of shape & into the distance
matrix of ), ending up with D x> = Dy,. This way, we can examine
our optimization algorithm in the artificial setting of perfect isom-
etry. We show correspondence and alignment results in Fig. 5 and
Fig. 9, respectively. We observe a significant improvement of both
the alignment and correspondence results. By neutralizing the ef-
fect of deviation between the axiomatic model and the real data, the
eigenfunctions are better aligned, as can be seen in Fig. 8, showing
a failure case of our method which is aligned correctly in the ab-
sence of this deviation.
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Refinement with cycle-consistency loss. Here, we use the anal-
ysis performed in previous section to improve the basic algorithm.
Specifically, we apply the conclusion that the deviation from per-
fect isometry has significant influence on our optimization process.
Therefore, we would like to use additional reliable priors to com-
pensate for the limitation of this approximation. As such strong
reliable prior, we consider the cycle consistency loss, introduced
in [GR19]. We add the loss term

leye(R) |Dx — P(R)" P(R)" Dy P(R)P(R)|£(31)

1

~
as additional regularization to our optimization objective, where P
is given by Eq. (27) and P is obtained similar to P, by replacing the
roles of X and ). Note, that this loss must be added to funsup (R),
rather than replace it, as bijection is a too permissive requirement.
There are many undesired bijections which are not isometric at all.
Specifically, the optimization objective we used is

Lunsup (R) + Leyc(R)

2 )
replacing funsup (R) by the average of funsup(R) and leyc(R),
using the same value for A as in the original objective. We show
alignment and correspondence results in Fig. 9 and Fig. 5, respec-
tively. We conclude that the requirement for cycle-consistency re-
sulted in significant improvement of the alignment algorithm. As
can be seen in Fig. 8, the eigenfunctions are aligned better in some
of the cases, that failed with the original optimization objective.

U(R) = lyjign(R) + ) 32)

4
/ e >
f \x f

Figure 8: The the improvement of the alignment assuming isome-
try is preserved between poses. Left to right: the left couple displays
the 7' scale-invariant eigenfunctions of the two shapes, the next
couple shows the aligned eigenfunctions using our algorithm, next
couple is the alignment output in the case where the inter-geodesic
distances are forced to be identical. That is, the inter-geodesic dis-
tances of the left surface were used also as those of right surface,
using the given ground truth correspondence. Finally, the right most
couple shows the alignment result for the cycle loss (without re-
stricting the distances to be the same).

A modified scale-invariant LBO. The relation between the Gaus-
sian curvature and the heat kernel signature (HKS) [SOG09] im-
plies that the SI-LBO operator could be computed alternatively, in
terms of the HKS. This specific construction is described in the sup-
plementary material. Fig. 5 shows correspondence results, obtained
by aligning the eigenfunctions of the modified SI-LBO operator.

7. Conclusions

We introduced a new method for shape correspondence, facilitat-
ing the aligned scale-invariant LBO eigenfunctions, as a complete
orthogonal set of intrinsic descriptors. We suggested to model this
alignment as an orthogonal matrix, restricted to linearly increasing
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Figure 9: The relative alignment error as a function of
the eigenfunction index, defined as err(k) = [lcol (TT*PRT —
CIDR)HLz(y?g)./Hcolk(‘PRT)Hﬁ.z(y)g). "l?he proposed method 1m-
proves the alignment for all eigenfunctions compared to the origi-
nal eigenfunctions.

band support, that represents the coupling radius of the eigenfunc-
tions. To extract the alignment matrix, we optimized a novel align-
ment loss, using the generalized multidimensional scaling based
unsupervised loss, and the cycle-consistency loss, as regularization
terms. For the optimization process we constructed an effective
numerical solver, based on the core module of FM-Net, stripping
away the deep network components. By this, we regained the ef-
fectiveness of the scale-invariant LBO eigenfunctions as compet-
itive descriptors, and achieved state-of-the-art correspondence re-
sults. We analysed the proposed algorithm to understand its essen-
tial limitations, and guide future improvements. We evidenced that
the deviation from isometry could be compensated for, by the addi-
tional requirement for cycle-consistency. Also, we observed that
the reflection symmetry of the optimization objective imposes a
limitation. Our conclusion is that by preventing the occurrences
of reflected eigenfunctions in the aligned sets, the correspondence
improves. We believe that this can be achieved by further requir-
ing the alignment of the triple products, defined by the gradients
of the eigenfunctions and the surface normal, as done in [SK14].
Also, in the future, we would like to efficiently extend the current
framework to a set of shapes.
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